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Abstract—The absolute minimum number of delay elements
characterizes the implementation of this newly proposed five
dimensional (5D) circuits, having infinite impulse response (IIR),
as well as all-pole digital filters. For both structures, filters
having the lattice property are considered. The 5D circuit
realizations use, for their implementation, a minimum number of
delay components. In addition, the dimension of the state—space
vector, of this particular implementation of the 5D model, is
minimal. The minimization of circuit implementations and their
realizations in state—space is demonstrated with two illustrative
examples.

Index Terms—SD filter, SD system, IIR lattice filter, all-pole
filter, state—space, realization.

I. INTRODUCTION

In recent decades, for long periods of time, the field of
multidimensional systems and filters, has been at the center
of electrical engineering with an emphasis in digital signal
processing [1]-[6]. Extensive related research efforts, in this
area, are the study of five dimensional (5D) systems and filters.
This particular area has already contributed significantly to
the processing of field light video using IIR filters, IIR depth
velocity filters, printed circuit boards testing, adaptive depth
velocity filters, and FPGA circuits [7]-[9].

In this paper, generalized circuits and minimal state—space
realizations for 5D IIR, and all-pole lattice digital filters are
introduced. In addition to hardware limitations, the necessity
for minimal implementation results from the absence of the
fundamental theorem of algebra for polynomials with more
than one dimension, which might result in theoretical or com-
putational complications when non—-minimal implementations
are utilized [2], [3].

Only for filters and systems up to four dimensions (4D),
minimal circuits and state—space realizations have been re-
ported [10], [11]. The results of this paper are the first attempt
to address the problem of minimal realization in 5D. These
digital filters in 5D are more complex, and require twice as
many coefficients as 4D filters.

Notwithstanding the difficulties in deriving the 5D transfer
functions, the end result is very elegant and follow the well—
known all-pass patterns, and properties of the conventional
one dimensional (1D) structures. What is interesting here is
that the dimensions increase from 4D to 5D, the diamond
type resulting transfer function structures appear to be more
symmetric or nearly symmetric.

II. PROBLEM STATEMENT

The following 5D (five dimensional) state equations are
comprised of a cyclic 5D structured state—space model [12],
[13].
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The matrices A, b, c’ of the above 5D state—space model
(1), (2), that is used to represent our 5D digital filter, have the
dimensions: (5n x 5n), (5n x 1), (1 x 5n), and d is a scalar.

The direct application of the 5D z—transform on (1), (2),
returns the following transfer function:

H(z1,22,23,24,25) = ¢/[Z — A]"'D, (5)

where, Z = z11,, & 291, & 231, & 241, & z51,, with &
denoting the direct sum.

The following sections present 5D lattice circuit structures,
with minimum delay elements, and cyclic state—space realiza-
tions, with minimum state vector.

III. 5D FIR LATTICE DISCRETE FILTERS

Based on the theory of conventional lattice filter [3], [4],
the circuit implementation of a 5D lattice FIR digital filter is
shown in Figs. 1 and 2.
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Fig. 2: 5D Generalized IIR lattice digital filter structure. Each square is a copy of the single section of Fig. 1.

The proposed circuit with 5n delay elements, 10n multipli-
ers and adders is illustrated in Fig. 1.

Next, the 5D cyclic structured
(A, b, c’,d) will be derived.

To obtain the state—space equations, for the 5D model, (A,
b, ¢/, d), the following procedure is used: “Label the outputs of
each delay element (in Figs. 1 and 2) to indicate the model’s
states. Write a state equation, by inspection, for each delay
element. Rearrange the equations so that each block contains
all of the state variables that are accessible. Extrapolate the
results”, as was suggested in [10], [11].

The acquired 5D cyclic structured state—space model matri-
ces are:

state—space model

x(i1, -+ ,i5) Ax(i1,- - ,i5) + bu(iy, - ,i5) (6)
y(is, - ,i5) = 'x(ir, - ,i5) + du(iy, - ,i5) (7)
where, @ (i1, ,i5) and x(i1,--- ,i5) are given in (3), (4),

and the matrices A, b, ¢/, and the scalar d are depicted in (8),
(top, next page).

The dimensions of the above matrices A, b, ¢/, of the above
5D state-space model, are respectively: (5n x 5n), (bn X
1), (1 x 5n), and d is a scalar.

Prime examples that illustrate the theoretical concepts above
presented in this work, follow below:

A. Example: First—order 5D IIR lattice discrete filter

The 5D state—space realization associated with the output
y(i1,- -+ ,i5) of the first-order circuit implementation shown
in Fig. 1 has the form:

Ax(iy,--- ,i5) + bu(i, - ,i5) (9)
CIX(ila"' 7i5) +du(215 o ai5) (10)

k(ila"' ai5)

y(in, -+ yis) =

where,
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L —As —As —As —Ay As
A,
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b = Ay |,
As
L 1
¢ = [1-A7 0 0 0 0],
d = Aj.

The dimensions of the above matrices A, b, ¢’ of the above
5D state—space model, are: (5 x 5), (5 x 1), (1 x 5), and d
is a scalar.

Applying the 5D z-transform on (9), (10),

Hi(21,29, 23,24, 25) = ¢/[Z — A] "D, (11)
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where, Z =
transfer—function Hy (21, 22, 23, 24, 25 ) takes the form depicted
in Table I.

FIRST-ORDER 5D IIR LATTICE TRANSFER FUNCTION

The 5D state—space realization
y(ila )
in Fig. 3 has the form:

diag(z1, 22, 23, 24, 25). The corresponding 5D  B. Example: First—order 5D all-pole lattice discrete filter

associated with the output

i5) of the first-order circuit implementation shown

Variables i Numerator [ Denominator
00000: constant 1 A1
00001: z5 A5 A1A5
00010: z4 A4A5 A1A4A5
00011: Z4Z5 A4 A1A4
00100: z3 A3A4 A1A3A4
00101: Z325 A3A4A5 A1A3A4A5
00110: Z324 A3A5 A1A3A5
00111: 232425 Aj A1A3
01000: 22 AsAs A1A2A3
01001: z2z5 Ao A3As A1A2A3A5
01010: 2024 A2 A3A4 A5 A1A2A3A 1 A5
01011: 292425 Ao A3y A1A2A3Ay
01100: 2223 Ao Ay A1A2Ay
01101: 222325 Ao AyAs A1A2A4 A5
01110: 222324 AsAj A1A2A5
01111: 29232425 Ao A1As
10000: z1 A1As Ao
10001: 2125 A1A2A5 Ao As
10010: z124 A1A2 A4 A5 Ao A4A5
10011: 212425 A1A2Ay Ao Ay
10100: 2123 A1A2A3Ay Ao A3Ay
10101: z12325 A1 A2 A3A4 A5 Ao A3A4 A5
10110: 212324 A1A2A3A5 AsA3As
10111: 21232425 A1A2A3 Ao Aj
11000: 2122 A1A3 Aj
11001: 212925 A1A3A5 A3As
11010: z1 2924 A1A3A4A5 A3A4A5
11011: 21222425 A1A3Ay A3Ay
11100: z12223 A1Ay Ay
11101: 21292325 A1A41A5 A4A5
11110: 21292324 A1As5 As
11111: 2122232425 Ay 1
Table I: 5D transfer function: Hi (21, 22, 23, 24, 25)

Note that in the above 5D transfer function (Table I),
the numerator and denominator coefficients are inverse as

in conventional 1D all-pass lattice filters [3],

[4]. Lattice—

structured digital filters, with multiplier components less than
unity, have discrete characteristics related to their stability as
well as their quantization properties [3], [4].
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The dimensions of the above matrices A, b,c’ of the

above first-order 5D state—space model, respectively are the

following: (5 x 5), (5 x 1), (1 x 5), and d is a scalar.

Applying the 5D z-transform on (12), (13),

Hs(z1, 22,23, 24, 25) = €'[2 — A] "D,

(14)
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Fig. 3: 5D first-order all-pole digital lattice filter.

where, Z = diag(z1, 22, 23, 24, 25). The corresponding 5D
transfer—function Ho (21, 22, 23, 24, 25 ) takes the form depicted
in Table II.

FIRST-ORDER 5D ALL-POLE LATTICE TRANSFER FUNCTION

Variables [[ Numerator | Denominator
00000: constant 0 Aq
00001: z5 0 A1A5
00010: z4 0 A1A4A5
00011: z425 0 A1Ay
00100: z3 0 A1A3A4
00101: 2325 0 A1A3A4A5
00110: 2324 0 A1A3A5
00111: 232425 0 A1As3
01000: z2 0 A1A2A3
01001: Z225 0 A1A2A3A5
01010: Z2Z24 0 A1A2A3A4A5
01011: 222425 0 A1A2A3Ay
01100: Z223 0 A1A2A4
01101: 222325 0 A1A2A4 A5
01110: 292324 0 A1 A2A5
01111: 22232425 0 A1Ao
10000: z1 0 Ao
10001: 2125 0 A2 As
10010: 2124 0 AsAyAs
10011: z1 2425 0 Ao Ay
10100: 2123 0 AsA3Ay
10101: 212325 0 AsA3AyAs5
10110: 212324 0 A2A3A5
10111: Z123%24%25 0 A2A3
11000: z1 22 0 As
11001: Z122%Z5 0 A3A5
11010: z12224 0 A3A4A5
11011: Z122Z24%25 0 A3A4
11100: Z122Z23 0 A4
11101: Z122Z3%25 0 A4A5
11110: Z12223%24 0 A5
11111: Z1222324%25 1 1

Table II: 5D transfer function: Hs(z1, 22, 23, 24, 25)

Considering w(iy, - - - ,i5), as the output of the filter shown
in Fig. 3, its generalized transfer function for the 5D all-pole
lattice filter is given in Table II.

IV. CONCLUSION

New circuit implementations and the corresponding state—
space for 5D IIR, and all-pole digital filters were discussed.
The state—space realization vectors, and the required delay
components are absolutely minimum (5n), the number of
multipliers and adders are both 10n. Furthermore, the resulting

transfer functions are symmetric and recursive depending on
their dimensionality. This recent work proves the conventional
lattice filter reflective coefficient property is valid for high
dimensional filters and systems. Since it has been established
here in this paper that the all-pass property holds for a lattice
filter up to 5D, it will be very interesting to determine the
generalized structure of the transfer function for a multidimen-
sional system. Although currently, it is now extremely difficult
to do so. Thus these generalized expressions of the transfer
function coefficients will be able to provide paths for more
efficient circuit implementations, and state—space realizations
in all dimensions now and in the future.
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