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SECOND–ORDER TWO–DIMENSIONAL SYSTEMS:
COMPUTING THE TRANSFER FUNCTION

George E. Antoniou — Marinos T. Michael
∗

In this paper the discrete Fourier transform is used to determine the coefficients of a transfer function of a new two-
dimensional model of second-order: x(i1 +2, i2 +2) = A0x(i1 +1, i2 +1)+A1x(i1 +1, i2)+A2x(i1, i2 +1). The algorithm is

straightforward and has been implemented using the software package MatlabTM . Two step-by-step examples illustrating

the application of the algorithm are presented.
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1 INTRODUCTION

During the past two decades there has been extensive

research in two dimensional (2D) systems. This is due

to the extensive range of applications, especially in en-

gineering and computing [1]–[3]. 2D systems can be rep-

resented with a transfer function in polynomial form or

using state space like structures [3]. State space based

techniques play a very crucial role in the analysis and

synthesis of 2D systems. An important problem is to de-

termine the coefficients of a transfer function from its

model representation and vice versa. Leverrier-Fadeeva,

discrete Fourier transform (DFT) algorithms and Van-

derlmode matrices can be modified to be used for various

models. The DFT has been used for the evaluation of

the transfer function coefficients for linear, singular, and

multidimensional state space systems [4]–[7].

In this paper a computer implementable algorithm is

proposed for the computation of the 2D transfer func-

tion for a new 2D system that is also of second-order.

Second-order one-dimensional systems have been used in

circuit theory, linear control systems, filtering, mechan-

ical system modeling and applied mathematics [8]–[10].

The proposed algorithm determines the coefficients of the

determinantal polynomial and the coefficients of the ad-

joint polynomial matrix, using the DFT. The computa-

tional speed of the method can be improved by using fast

Fourier transform techniques. It is noted that the pro-

posed algorithm easily can be modified to be used with

second-order 2D systems of other types [11].

2 SECOND–ORDER

TWO–DIMENSIONAL SYSTEM

A second-order two-dimensional (SO2D) system has
the following structure [11]:

x(i1 + 2, i2 + 2) = A0x(i1 + 1, i2 + 1)

+ A1x(i1 + 1, i2) + A2x(i1, i2 + 1)

+ B1u(i1 + 1, i2) + B2u(i1, i2 + 1) ,

y(i1, i2) = C x(i1, i2)

(1)

where, x(i1, i2) ∈ Rλ , u(i1, i2) ∈ Rm , y(i1, i2) ∈ Rp ,
i1, i2 are integer-valued vertical and horizontal coordi-
nates, respectively, x(i1, i2) is the local vector at (i1, i2),
u(i1, i2) is the input vector and y(i1, i2) is the output vec-
tor. Ak , for k = 0, 1, 2 and B1 , B2 , C , are real matrices
of appropriate dimensions denoting the characteristics of
the SO2D system that can also be represented by a 2D
transfer function, as in the regular 2D systems [12]. It is
noted that this particular SO2D system (1) is an exten-
sion of the regular 2D Fornasini-Marchesini model [12] to
cover systems of second-order. For more 2D second-order
structures the reader can refer to [11].

Applying the 2D zi , i = 1, 2 transform to system (1),
with zero initial conditions, the transfer function is found
to be:

T(z1, z2) =

C [Iz2
1z2

2 − A0z1z2 − A1z1 − A2z2]
−1 · [B1z1 + B2z2] .

(2)

In the following section an interpolative approach is de-
veloped for determining the transfer function T(z1, z2),
given the matrices Ak , k = 0, 1, 2 and B1 B2 , C us-
ing the 2D DFT. For the sake of completeness a brief
description of the 2D DFT follows.
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3 2D DISCRETE FOURIER TRANSFORM

Consider the finite sequences X(k1, k2) and X̃(r1, r2),
ki, ri = 0, . . . ,Mi , ∀ i = 1, 2. In order for the sequences

X(k1, k2) and X̃(r1, r2), to constitute a 2D DFT pair the
following relations should hold [13]:

X̃(r1, r2) =

M1
∑

k1=0

M2
∑

k2=0

X(k1, k2)W
−k1r1

1 W−k2r2

2 ,

(3)

X(k1, k2) =
1

R

M1
∑

r1=0

M2
∑

r2=0

X̃(r1, r2)W
k1r1

1 W k2r2

2 (4)

where

R = (M1 + 1)(M2 + 1) , (5)

Wi = e(2πj)/(Mi+1), i = 1, 2 , (6)

X , X̃ are discrete argument matrix valued functions,
with dimensions p × m .

In the following section an interpolative approach is
developed for determining the transfer function T(s),
given the matrices Ai , i = 0, 1, 2 and B1 , B2 C , using
the 2D DFT.

4 ALGORITHM

The transfer function of a SO2D system (1) is

T(z1, z2) =
N(z1, z2)

d(z1, z2)
(7)

where

N(z1, z2) =C adj
[

Iz2
1z2

2 − A0z1z2 − A1z1

− A2z2

]

· (B1z1 + B2z2) , (8)

d(z1, z2) =det
[

Iz2
1z2

2 − A0z1z2 − A1z1 − A2z2

]

. (9)

Equations (8) and (9) can be written in polynomial form
as follows:

N(z1, z2) =

nP
max
∑

λ1=0

nP
max
∑

λ2=0

Pλ1,λ2
zλ1

1 zλ2

2 (10)

with nP
max := max

(

(2λ − 1), (2λ − 1)
)

. The numerator

coefficients Pλ1,λ2
are matrices with dimensions (p×m).

d(z1, z2) =

nq
max
∑

λ1=0

nq
max
∑

λ2=0

qλ1,λ2
zλ1

1 zλ2

2 (11)

where nq
max := max(2λ, 2λ). The denominator coeffi-

cients qλ1,λ2
are scalars.

The numerator polynomial matrix N(z1, z2) and the
denominator polynomial d(z1, z2) can be numerically

computed at R = (r + 1)2 points equally spaced on
the unit 2D disc. The R points are chosen as (z1, z2) =
[v(i1), v(i2)] , i1, i2 = 0, . . . , r with r = 2λ , according to
definition as:

v1(i) = v2(i) = W−i, ∀ i = 0, . . . , r (12)

where
Wi = e(2πj)/(r+1), i = 1, 2 . (13)

The values of the transfer function (7) at the R points
are the corresponding 2D DFT coefficients.

4.1 Denominator Polynomial

To evaluate the denominator coefficients qλ1,λ2
define

ai1,i2 = det
[

Iv2
1(i1)v

2
2(i2) − A0v1(i1)v2(i2)

− A1v1(i1) − A2v2(i2)
]

. (14)

Therefore, using equations (11) and (14), ai1,i2 can be
defined as

ai1,i2 = d[v1(i1), v2(i2)] . (15)

Provided that at least one of ai1,i2 6= 0.

Equations (11), (12) and (15) yield

ai1,i2 =

r
∑

λ1=0

r
∑

λ2=0

qλ1,λ2
W−(i1λ1+i2λ2) (16)

In the above equation (16) it is obvious that [ai1,i2 ] and
[qλ1,λ2

] form a 2D DFT pair. Therefore the coefficients
[qλ1,λ2

] can be computed using the inverse 2D DFT, as
follows:

qλ1,λ2
=

1

R

r
∑

i1=0

r
∑

i2=0

ai1,i2W
(i1λ1+i2λ2) (17)

4.2 Numerator Polynomial

To evaluate the numerator matrix polynomial Pλ1,λ2
,

define

Fi1,i2 = C adj[Iv2
1(i1)v

2
2(i2) − A0v1(i1)v2(i2)

− A1v1(i1) − A2v2(i2)
]

·
[

B1v1(i1) + B2v2(i2)
]

. (18)

Using equations (10) and (18), Fi1,i2 can be defined as

Fi1,i2 = N[v1(i1), v2(i2)] . (19)

Equations (10), (12) and (19) yield

Fi1,i2 =
r−1
∑

λ1=0

r−1
∑

λ2=0

Pλ1,λ2
W−(i1λ1+i2λ2). (20)

In the above equation (20), [Fi1,i2 ] , [Pλ1,λ2
] form a

2D DFT pair. Therefore the coefficients Pλ1,λ2
can be

computed, using the inverse 2D DFT, as follows

Pλ1,λ2
=

1

R

r−1
∑

i1=0

r−1
∑

i2=0

Fi1,i2W
(i1λ1+i2λ2). (21)

Two salient examples, simple yet illustrative of the
theoretical concepts presented in this work, follow below
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5 NUMERICAL EXAMPLES

5.1 Single-Input Single-Output

Consider the following single-input single-output SO2D
system

x(i1 + 2, i2 + 2) = A0x(i1 + 1, i2 + 1) + A1x(i1 + 1, i2)

+A2x(i1, i2 + 1) + B1u(i1 + 1, i2) + B2u(i1, i2 + 1) ,

y(i1, i2) = C x(i1, i2) (22)

where

A0 =

[

1 3
0 0

]

, A1 =

[

−1 1
0 1

]

, A2 =

[

0 1
1 1

]

,

B1 =

[

1
0

]

, B2 =

[

0
1

]

,C = [ 0 1 ] .

Since λ = 2, the r = 2λ = 4. Therefore R = (r + 1)2 =
25. The direct application of the proposed algorithm
yields











a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44











=









−6.0000 + 0.0000j 3.0451 + 2.4899j −2.5451 + 0.2245j

−0.3090 + 4.7553j 1.9271 + 3.3022j 0.1180 − 2.7144j

0.8090 + 2.9389j 2.1910 − 4.3920j −1.4271 − 3.2164j

0.8090 − 2.9389j −2.1180 − 2.2654j −1.0000 + 2.3511j

−0.3090 − 4.7553j −1.0000 + 3.8042j 3.3090 − 1.4001j

−2.5451 − 0.2245j 3.0451 − 2.4899j

3.3090 + 1.4001j −1.0000 − 3.8042j

−1.0000 − 2.3511j −2.1180 + 2.2654j

−1.4271 + 3.2164j 2.1910 + 4.3920j

0.1180 + 2.7144j 1.9271 − 3.3022j









and










F00 F01 F02 F03 F04

F10 F11 F12 F13 F14

F20 F21 F22 F23 F24

F30 F31 F32 F33 F34

F40 F41 F42 F43 F44











=









2.0000 + 0.0000j 0.6180 − 0.7265j −1.6180 − 3.0777j

−0.5000 − 1.5388j 0.1910 − 1.7634j −3.4271 + 1.7634j

−0.5000 + 0.3633j −2.7361 − 0.3633j 1.3090 + 2.8532j

−0.5000 − 0.3633j −0.0729 + 2.8532j 2.0000 − 0.0000j

−0.5000 + 1.5388j 2.0000 − 0.0000j 1.7361 − 1.5388j

−1.6180 + 3.0777j 0.6180 + 0.7265j

1.7361 + 1.5388j 2.0000 + 0.0000j

2.0000 + 0.0000j −0.0729 − 2.8532j

1.3090 − 2.8532j −2.7361 + 0.3633j

−3.4271 − 1.7634j 0.1910 + 1.7634j









.

Using (17), the denominator coefficients are











q00 q01 q02 q03 q04

q10 q11 q12 q13 q14

q20 q21 q22 q23 q24

q30 q31 q32 q33 q34

q40 q41 q42 q43 q44











=











0 0 −1 0 0
0 −2 −2 0 0

−1 1 0 −1 0
0 0 0 −1 0
0 0 0 0 1











.

Using (21), the numerator matrix polynomials are











P00 P01 P02 P03 P04

P10 P11 P12 P13 P14

P20 P21 P22 P23 P24

P30 P31 P32 P33 P34

P40 P41 P42 P43 P44











=











0 0 0 0 0
0 1 −1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0











.

Once the denominator and the adjoint matrix co-

efficients have been computed, the transfer function

T (z1, z2) is determined as

T (z1, z2) =
(

P23z
2
1z3

2 + P12z1z
2
2 + P11z1z2

)(

q44z
4
1z4

2

+ q33z
3
1z3

2 + q23z
2
1z3

2 + q21z
2
1z2 + q20z

2
1 + q12z1z

2
2

+ q11z1z2 + q02z
2
2

)

−1

or

T (z1, z2) =

z2
1z3

2 − z1z
2
2 + z1z2

z4
1z4

2 − z3
1z3

2 − z2
1z3

2 + z2
1z2 − z2

1 − 2z1z
2
2 − 2z1z2 − z2

2

.

The above result can be verified using (2).

5.2 Multiple-Input Single-Output

Consider the following two-input single-output SO2D

system:

x(i1 + 2, i2 + 2) = A0x(i1 + 1, i2 + 1) + A1x(i1 + 1, i2)

+A2x(i1, i2 + 1) + B1u(i1 + 1, i2) + B2u(i1, i2 + 1) ,

y(i1, i2) = Cx(i1, i2) (23)

where

A0 =

[

1 3
0 0

]

, A1 =

[

−1 1
0 1

]

, A2 =

[

0 1
1 1

]

B1 =

[

1 2
−3 0

]

, B2 =

[

3 1
0 1

]

, C = [ 1 0 ] .

Since λ = 2, the r = 2λ = 4. Therefore R = (r + 1)2 =

25. The direct application of the proposed algorithm

yields











a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44











=
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







−6.0000 + 0.0000j 3.0451 + 2.4899j −2.5451 + 0.2245j

−0.3090 + 4.7553j 1.9271 + 3.3022j 0.1180 − 2.7144j

0.8090 + 2.9389j 2.1910 − 4.3920j −1.4271 − 3.2164j

0.8090 − 2.9389j −2.1180 − 2.2654j −1.0000 + 2.3511j

−0.3090 − 4.7553j −1.0000 + 3.8042j 3.3090 − 1.4001j

−2.5451 − 0.2245j 3.0451 − 2.4899j

3.3090 + 1.4001j −1.0000 − 3.8042j

−1.0000 − 2.3511j −2.1180 + 2.2654j

−1.4271 + 3.2164j 2.1910 + 4.3920j

0.1180 + 2.7144j 1.9271 − 3.3022j









.

and

F00 = [−19.0000 2.0000 ] ,

F01 = [−9.7533 + 18.1558j −7.4721 − 0.4490j ] ,

F02 = [ 9.2533 + 4.6493j 1.4721 + 4.9798j ] ,

F03 = [ 9.2533 − 4.6493j 1.4721 − 4.9798j ] ,

F04 = [−9.7533 − 18.1558j −7.4721 + 0.4490j ] ,

F10 = [ 2.1180 + 13.1230j −0.5000 + 0.8123j ] ,

F11 = [ 22.6074 + 2.9389j 3.8090 + 4.1145j ] ,

F12 = [ 1.9549 − 12.0005j 3.8090 − 0.5878j ] ,

F13 = [−7.6180 − 3.3552j −0.5000 − 1.5388j ] ,

F14 = [−2.8820 + 11.0494j 1.4721 + 3.0777j ] ,

F20 = [−0.1180 − 6.3471j −0.5000 − 3.4410j ] ,

F21 = [−5.3820 − 7.3309j −0.5000 + 0.3633j ] ,

F22 = [−3.1074 − 4.7553j 2.6910 − 6.6574j ] ,

F23 = [−5.1180 + 5.5146j −7.4721 − 0.7265j ] ,

F24 = [ 7.5451 − 6.1024j 2.6910 + 0.9511j ] ,

F30 = [−0.1180 + 6.3471j −0.5000 + 3.4410j ]

F31 = [ 7.5451 + 6.1024j 2.6910 − 0.9511j ] ,

F32 = [−5.1180 − 5.5146j −7.4721 + 0.7265j ] ,

F33 = [−3.1074 + 4.7553j 2.6910 + 6.6574j ] ,

F34 = [−5.3820 + 7.3309j −0.5000 − 0.3633j ] ,

F40 = [ 2.1180 − 13.1230j −0.5000 − 0.8123j ] ,

F41 = [−2.8820 − 11.0494j 1.4721 − 3.0777j ] ,

F42 = [−7.6180 + 3.3552j −0.5000 + 1.5388j ] ,

F43 = [ 1.9549 + 12.0005j 3.8090 + 0.5878j ] ,

F44 = [ 22.6074 − 2.9389j 3.8090 − 4.1145j ] .

Using (17), the denominator coefficients are










q00 q01 q02 q03 q04

q10 q11 q12 q13 q14

q20 q21 q22 q23 q24

q30 q31 q32 q33 q34

q40 q41 q42 q43 q44











=











0 0 −1 0 0
0 −2 −2 0 0

−1 1 0 −1 0
0 0 0 −1 0
0 0 0 0 1











.

Using (21), the numerator matrix polynomials are










P00 P01 P02 P03 P04

P10 P11 P12 P13 P14

P20 P21 P22 P23 P24

P30 P31 P32 P33 P34

P40 P41 P42 P43 P44











=

=











0 0 [−3 0] 0 0
0 [−7 − 2] [0 3] 0 0

[−4 − 2] [−9 0] 0 [3 1] 0
0 0 [1 2] 0 0
0 0 0 0 0











.

Once the denominator and the adjoint matrix co-

efficients have been computed, the transfer function

T(z1, z2) is determined as

T(z1, z2) =
(

P02z
2
2 + P11z1z2 + P12z1z

2
2 + P20z

2
1

+P21z
2
1z2 +P23z

2
1z3

2 +P32z
3
1z2

2

)(

q02z
2
2 +q11z1z2 +q12z1z

2
2

+ q20z
2
1 + q21z

2
1z2 + q23z

2
1z3

2 + q33z
3
1z3

2 + q44z
4
1z4

2

)

−1

or

T(z1, z2) =
(

z2
2 [−3 0 ] + z1z2 [−7 −2 ] + z1z

2
2 [ 0 3 ]

+ z2
1 [−4 −2 ] + z2

1z2 [−9 0 ] + z2
1z3

2 [ 3 1 ] + z3
1z2

2 [ 1 2 ]
)

×
(

−z2
2−2z1z2−2z1z

2
2−z2

1 +z2
1z2−z2

1z3
2−z3

1z3
2 +z4

1z4
2

)

−1

or

T(z1, z2) =
(

[

−3z2
2 − 7z1z2 − 4z2

1 − 9z2
1z2 + 3z2

1z3
2

+z3
1z2

2 | − 2z1z2 + 3z1z
2
2 − 2z2

1 + z2
1z3

2 + 2z3
1z2

2

]

)

×
(

−z2
2−2z1z2−2z1z

2
2−z2

1 +z2
1z2−z2

1z3
2−z3

1z3
2 +z4

1z4
2

)

−1

.

The above result can be verified using (2).

6 COMPLEXITY OF THE ALGORITHM

The proposed algorithm has two parts. In the first part

the matrices Fi1,i2 and the scalars ai1,i2 are evaluated

with a cost of pmRλ3 operations. In the second part the

coefficients of Pλ1,λ2
and qλ1,λ2

are evaluated using the

DFT with a cost of pmR2 + R2 operations. For more

efficient computation, especially for high order systems,

fast Fourier methods can be used to implement the DFT

[13].

Due to the inherent modularity and the algorithmic

structure of the presented method high parallelism is per-

mitted. In this case the computation of each determinant

ai1,i2 , (16), and each matrix product Fi1,i2 , (20), can be

distributed over a number of processing elements, consid-

erably reducing the computation time of the algorithm.
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7 CONCLUSIONS

An algorithm was presented for the computation of the
transfer function for a new 2D system model of second or-
der. The technique is using the DFT algorithm and has
been implemented with the software package MatlabTM .
To further improve the computational speed of the algo-
rithm, fast Fourier techniques and VHDL/FPGA based
implementations can be used. The presented algorithm
can be easily modified to be used for regular, singu-
lar and positive SO2D models of other types [11]. Also
the presented model/algorithm can easily be extended to
systems with higher order and dimensions. It is noted
that known problems such as stability, coefficient sensi-
tivity, filtering etc, can be studied using the SO2D system
model.
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